It is difficult to formulate a structure for $(3-NO_2-6-CH_3quinO)_3Cu_4Cl_8$. A detailed study of the infrared spectrum might allow a tentative structure to be assigned. The two frequencies assigned to Cu–Cl stretching are similar to those reported for the complexes with the formula Cu₃Cl₆L₂, and the basic halogen coordination must be the same. Why these complexes do not exhibit oxygen bridging is unknown.

Miscellaneous Complexes.—The infrared spectrum of $(pyO)_4Cu(ClO_4)_2$ indicates two N–O stretching frequencies; however, the structure³⁰ shows the four pyridine N-oxide molecules in a square-planar array. The (30) D. S. Brown, J. D. Lee, and B. G. A. Melsum, *Chem. Commun.*, 852 (1968).

axial sites are not occupied. The complex $(pyO)_6Cu-(ClO_4)_2$ also has been reported but few physical data are available. The complex $(pyO)_2Cu(ClO_4)_2$ has not been reported, but it should exist as an infinite linear polymer, structure XII.

Acknowledgment.—I wish to thank The Robert A. Welch Foundation and the T.C.U. Research Foundation for their financial support of this project. I acknowledge the American Chemical Society, PRF No. 3240-DS, for the International Award and the University of Southampton for providing me with facilities. I particularly acknowledge Professor Alan Carrington and the many friends with whom I discussed this work.

Contribution from the Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Magnetic Susceptibility Study of Copper(II) Halide Complexes with 4-Substituted Pyridine N-Oxides

BY M. R. KIDD AND W. H. WATSON

Received February 5, 1969

The magnetic susceptibilities have been measured for 12 1:1 copper(II) halide complexes with 4-substituted pyridine Noxides from 77°K to near the melting or decomposition temperatures. The magnetic susceptibility data were least-squares fitted to a modified Bleaney-Bowers equation. The correlations of the exchange energy, 2J, with the reflectance spectra and the substituent parameter $\sigma_{\rm R}$ are discussed in terms of the molecular and crystal structures.

Introduction

The magnetic properties have been reported for a number of complexes formed between aromatic Noxides and copper(II) halides.¹⁻¹⁰ Some of these complexes have abnormally low magnetic moments, and they usually are characterized as oxygen-bridged dimers or polymeric species. The magnetic susceptibility of the copper(II) ions in the complexes can be fitted to an equation which is derived from the assumption of a simple scalar interaction of the form $-2J_{ij}S_i \cdot S_j$. For a binuclear complex the exchange energy 2J is the separation between the singlet and triplet states generated by the scalar interaction. The interaction usually is antiferromagnetic and the ground state is the singlet.

In aromatic N-oxide complexes the exchange inter-

(2) M. Kubo, Y. Kurodo, M. Kishita, and Y. Muto, Australian J. Chem., 16, 7 (1963).

(3) M. Kato, H. B. Jonassen, and J. C. Fanning, Chem. Rev., 64, 99 (1964).

(4) W. E. Hatfield and J. S. Paschal, J. Am. Chem. Soc., 86, 3888 (1964).
(5) W. E. Hatfield, Y. Muto, H. B. Jonassen, and J. S. Paschal, Inorg.

Chem., 4, 97 (1965). (6) H. L. Schafer, J. C. Morrow, and H. M. Smith, J. Chem. Phys., 42,

(1965).
 W.E. Hatfold and L.C. Mayrison Lugar, Cham. 5 1300 (1966).

(7) W. E. Hatfield and J. C. Morrison, Inorg. Chem., 5, 1390 (1966).

(8) Y. Muto, M. Kato, H. B. Jonassen, and H. N. Ramaswamy, Bull. Chem. Soc. Japan, 40, 1535 (1967).

(9) S. J. Gruber, C. M. Harris, E. Kokot, S. L. Lenzer, T. N. Lockyer, and E. Sinn, Australian J. Chem., 20, 2403 (1967).

(10) M. Kato, Y. Muto, and H. B. Jonassen, Bull. Chem. Soc. Japan, 40, 1738 (1967).

action occurs through the bridging oxygen atoms and is defined as superexchange. Since the intervening oxygen atoms aid in the expansion of the d orbital containing the magnetic electrons, it is logical to assume any change in electron density around the oxygen atoms or copper(II) ions should affect the magnitude of the exchange interaction. It is anticipated that substitution at the 4 position of the pyridine N-oxide molecule should affect the electron density at the oxygen atom and hence the singlet-triplet separation. A correlation was reported between the substituent parameter $\sigma_{\rm R}$ and the exchange energy 2J, for a limited number of 1:14-substituted complexes,⁴ [CuCl₂L]₂; however a subsequent report on a more extended series of complexes reported no correlation.¹⁰ The latter paper did report a correlation between the room-temperature magnetic moments and ν_{max} of an electronic transition in the region of 700-1000 nm. This implies a relationship between an electronically allowed singlet-singlet transition in the visible-infrared region of the spectrum with an electronically forbidden singlet-triplet separation of approximately 1 kK which corresponds to the infrared region.

We have measured accurately the magnetic susceptibilities of a more extended series of 1:1 complexes between 4-substituted pyridine N-oxides and copper(II) chloride. We wish to discuss these results in terms of the crystal and molecular structures.

⁽¹⁾ C. M. Harris, E. Kokot, S. L. Lenzer, and T. N. Lockyer, *Chem. Ind.* (London), 651 (1962).

Experimental Section

Synthesis.—Two procedures were used to prepare the complexes.

Method A.—An ethanol solution of the ligand was added to a heated ethanol solution containing anhydrous $CuCl_2$ in slight excess of a 1:1 molar ratio. A green or yellow-green precipitate formed and was collected after standing for several minutes. The solid was added to enough boiling ethanol to achieve dissolution, and the complex was recrystallized by slow evaporation of the warm solvent. After the solution was reduced to less than one-fourth of its original volume, it was allowed to cool. The crystals were collected and dried under vacuum.

Method B.—Approximately 2 g of ligand was dissolved in enough ethanol to keep it in solution at room temperature. An amount of $CuCl_2$ slightly over the stoichiometric quantity was dissolved in 50 ml of ethanol. The ligand solution was added slowly to the $CuCl_2$ solution with stirring but no heating. A precipitate formed immediately, but the solution was allowed to stand for an additional few minutes. The precipitate was collected by vacuum filtration, washed with cold ethanol, and the filter funnel was placed immediately into a vacuum desiccator for drying.

Di- μ -(pyridine N-oxide)-bis[dichlorocopper(II)], [(C₃H_cNO)-CuCl₂]₂.—This complex, synthesized by method A, was reported by Quagliano, *et al.*¹¹ The pyridine N-oxide was obtained from Reilly Tar and Chemical Co. *Anal.* Calcd for Cu(C₃H₅NO)-Cl₂: C, 26.16; H, 2.20; N, 6.10. Found: C, 26.27; H, 2.18; N, 6.01.

Di- μ -(4-methylpyridine N-oxide)-bis[dichlorocopper(II)], [(CH₃C₅H₄NO)CuCl₂]₂.—The 4-methylpyridine N-oxide (Aldrich Chemical Co., Inc.) was recrystallized from toluene. The complex formed by method A appeared as fine green needles which were sensitive to atmospheric water. The complex melted with decomposition at 220°. *Anal.* Calcd for Cu(C₆H₇NO)Cl₂: Cu, 26.09; C, 29.58; H, 2.90; N, 5.76. Found: Cu, 26.10; C, 29.49; H, 2.96; N, 5.62.

Di- μ -(4-chloropyridine N-oxide)-bis[dichlorocopper(II)], [(Cl-C₅H₄NO)CuCl₂]₂.—The ligand was synthesized from 4-nitropyridine N-oxide by the method of Ochiai.¹² The complex was obtained by method A. The small dark green crystals of the complex melted with decomposition at 207–209°. *Anal.* Calcd for Cu(C₅H₄ClNO)Cl₂: Cu, 24.07; C, 22.75; H, 1.53; N, 5.30. Found: Cu, 23.97; C, 22.75; H, 1.44; N, 5.23.

Di- μ -(4-bromopyridine N-oxide)-bis[dichlorocopper(II)], [(Br-C₅H₄NO)CuCl₂]₂.—The ligand was synthesized by refluxing 10 g of 4-nitropyridine N-oxide for 2 days in a mixture of acetic anhydride and acetic acid, 100 ml of each, and 50 ml of 48% HBr. The reaction mixture was concentrated and made slightly basic with NaCO₃. The 4-bromopyridine N-oxide was extracted with chloroform and recrystallized from benzene, mp 143–144°. The complex, formed by method A, appeared as small light green flakes which melted about 235° with decomposition. Anal. Calcd for Cu(C₆H₄BrNO)Cl₂: Cu, 20.66; C, 19.47; H, 1.31; N, 4.54. Found: Cu, 20.54; C, 19.62; H, 1.36; N, 4.30.

Di- μ -(4-*t*-butylpyridine N-oxide)-bis[dichlorocopper(II)], [((CH₃)₃CC₅H₄NO)CuCl₂]₂.—The ligand was obtained by oxidation of 4-*t*-butylpyridine (Reilly Tar and Chemical Co.) using the general method of Ochiai.¹² Yellow-green needles of the complex, obtained by method A, melted with decomposition at 257– 260°. Anal. Calcd for Cu(C₉H₁₃NO)Cl₂: Cu, 22.24; C, 37.84; H, 4.59; N, 4.90. Found: Cu, 21.80; C, 37.92; H, 4.68; N, 4.89.

Di- μ -(4-methoxypyridine N-oxide)-bis[dichlorocopper(II)], [(CH₃OC₃H₄NO)CuCl₂]₂.—The 4-methoxypyridine N-oxide was obtained from Aldrich Chemical Co. Fine dark green crystals of the complex were obtained by method A. The complex melted with decomposition at 210–214°. Anal. Caled for Cu(C₆H₇- NO₂)Cl₂: Cu, 24.48; C, 27.76; H, 2.72; N, 5.39. Found: Cu, 24.33; C, 27.56; H, 2.65; N, 5.34.

Di- μ -(4-ethoxypyridine N-oxide)-bis[dichlorocopper(II)], [(CH₃CH₂OC₅H₄NO)CuCl₂]₂.—The ligand was obtained from Aldrich Chemical Co., and the complex, prepared by method A, was obtained as fine green crystals. The complex melted with decomposition at approximately 247°. *Anal.* Calcd for Cu-(C₁H₉NO₂)Cl₂: Cu, 23.23; C, 30.73; H, 3.32; N, 5.12. Found: Cu, 23.02; C, 30.49; H, 3.24; N, 5.03.

Di- μ -(4-benzylpyridine N-oxide)-bis[dichlorocopper(II)], [(C₆-H₈CH₂C₆H₄NO)CuCl₂]₂.—The ligand was obtained by oxidation of 4-benzylpyridine (Reilly Tar and Chemical Co.) using the general procedure of Ochiai.¹² The complex, obtained by method A, was in the form of thin green plates. Melting and decomposition occurred at 202-204°. *Anal.* Calcd for Cu(C₁₂H₁₁NO)Cl₂: Cu, 19.88; C, 45.09; H, 3.47; N, 4.38. Found: Cu, 19.86; C, 45.23; H, 3.47; N, 4.39.

Di- μ -(4-phenylpyridine N-oxide)-bis[dichlorocopper(II)], [(C₆-H₃C₅H₄NO)CuCl₂]₂.—The ligand was prepared by Ochiai's general procedure¹² and recrystallized from toluene; the melting point was 150–151°. Dark green hexagonal prisms formed slowly after the addition of the CuCl₂ solution, method A. Melting and decomposition occurred at 245°. *Anal.* Calcd for Cu-(C₁₁H₉NO)Cl₂: Cu, 21.42; C, 41.50; H, 3.06; N, 4.72. Found: Cu, 20.25; C, 41.67; H, 3.31; N, 4.39.

Di- μ -(4-pyridylcarbinol N-oxide)-bis[dichlorocopper(II)], [(HOCH₂C₅H₄NO)CuCl₂]₂.—The ligand was obtained from Aldrich Chemical Co. Method A was modified because the precipitate of the complex is very sparingly soluble. Instead of recrystallization, the fine yellow precipitate was digested for 1 hr in boiling ethanol, collected, and dried under vacuum. The yellow powdery material melted with decomposition at 226°. *Anal.* Calcd for Cu(C₆H₇NO₂)Cl₂: Cu, 24.48; C, 27.76; H, 2.72; N, 5.40. Found: Cu, 24.40; C, 27.69; H, 2.69; N, 5.21.

Di- μ -(4-carbomethoxypyridine N-oxide)-bis[dichlorocopper(II)], [(COOCH₃C₅H₄NO)CuCl₂]₂.—Ten grams of methyl isonicotinate (Reilly Tar and Chemical Co.) was oxidized in a mixture of 100 ml of acetic acid, 50 ml of acetic anhydride, and 25 ml of 30% H₂O₂. The reaction mixture was left at room temperature and 50 ml of H₂O₂ was added in small portions over a 2-day period. The product was isolated in the usual manner, mp 115–116°. Chemical analysis and spectra were in agreement with those expected for 4-carbomethoxypyridine N-oxide. Light green crystals of the complex were obtained by method A. The melting point with decomposition was approximately 232°. Anal. Calcd for Cu(C₇H₇NO₃)Cl₂: Cu, 22.09; C, 29.23; H, 2.45; N, 4.87. Found: Cu, 21.83; C, 29.20; H, 2.54; N, 4.72.

Di- μ -(4-nitropyridine N-oxide)-bis[dichlorocopper(II)], [(NO₂-C₅H₄NO)CuCl₂]₂.—The 4-nitropyridine N-oxide was obtained from Aldrich Chemical Co. The complex, synthesized by method B, was obtained as gold-colored crystals, mp 253°. The synthesis of this complex by another method has been reported.¹³ Anal. Calcd for Cu(C₅H₄N₂O₈)Cl₂: Cu, 23.14; C, 21.87; H, 1.47; N, 10.21. Found: Cu, 22.97; C, 21.66; H, 1.42; N, 9.66.

Di- μ -(4-cyanopyridine N-oxide)-bis[dichlorocopper(II)], [(CNC₆H₄NO)CuCl₂]₂.—The 4-cyanopyridine N-oxide was prepared from 4-cyanopyridine (Reilly Tar and Chemical Co.) by the method of Ochiai.¹² Fine yellow crystals of the complex were obtained by method B. Melting with decomposition occurred at 238°. This complex was decomposed readily by atmospheric water, especially while still wet with ethanol. The magnetic data reported by Muto, *et al.*,⁸ indicate their complex is not identical with the one which we report. *Anal.* Calcd for Cu(C₆H₄N₂O)Cl₂: Cu, 24.96; C, 28.31; H, 1.58; N, 11.01. Found: Cu, 24.60; C, 28.01; H, 1.55; N, 10.93.

Magnetic Susceptibility.—Magnetic susceptibilities were measured by the Faraday method using a Cahn automatic electrobalance, Model RH. Electrobalance output and thermocouple

⁽¹¹⁾ J. V. Quagliano, J. Fujita, G. Franz, D. J. Philips, J. A. Walmsley, and S. Y. Tyree, J. Am. Chem. Soc., 83, 3770 (1961).

⁽¹²⁾ E. Ochiai, J. Org. Chem., 18, 534 (1953).

⁽¹³⁾ R. Whyman and W. E. Hatfield, Inorg. Chem., 6, 1859 (1967).

voltage were measured with a Hewlett-Packard digital voltmeter, Model 3440A, with a Model 3442A range plug-in unit. A digital recorder, Hewlett-Packard Model 562A, printed the output of the voltmeter upon receiving a pulse from an automatic control system. The automatic control system performed all switching for the magnet control and read-out systems.¹⁴ A manual mode of operation also was available. A thermocouple of silver with 0.37 atom % gold and gold with 2.10 atom %cobalt was used to measure the temperature. The thermocouple measuring junction was placed directly below the sample container and the reference junction was immersed in an ice bath. The temperature dependence of the magnetic susceptibility of ammonium manganese sulfate hexahydrate15 was used to calibrate the thermocouple at low temperatures and the susceptibility of mercuric tetrathiocyanatocobaltate(II)¹⁶ was used at higher temperatures. A helium dewar was used for all temperatures below room temperature, and a special heating unit replaced the dewar above room temperature. Calibration of the magnetic field and standardization of the sample container were carefully checked. The molar susceptibility, χ_m , was corrected to give the susceptibility per mole of copper ion, $\chi_{\rm m}^{\rm eor}$, by subtracting the atomic diamagnetic contributions.

A theoretical expression for the molar susceptibility of the copper ions may be derived from the Heisenberg–Dirac–Van Vleck spin-coupling Hamiltonian¹⁷ by assuming a scalar coupling interaction $-2J_{ij}S_i \cdot S_j$. A modification of the expression yields

$$\chi_{\rm m}^{\rm cor} = \frac{Ng^2\beta^2}{3kT} [1 + 1/_{\rm 0} \exp(2J/kT)]^{-1} + N\alpha + \frac{C_{\rm i}}{T}$$

The term C_i represents an attempt to correct for any paramagnetic impurity which might contaminate the sample. The per cent impurity is estimated by assuming an effective magnetic moment of 1.9 BM. This is a logical correction since contamination probably is due to the corresponding 2:1 copper(II) complexes. The experimental data were least-squares fitted to the theoretical expression and the parameters g, 2J, $N\alpha$, and C_i were printed out. For complexes with large values of 2J, the least-squares fit was not sensitive to the magnitude of g. The value of g was fixed to 2.200 and the other parameters were refined. These parameters are reported in Table I. The experimental points and the theoretical curves were also plotted as part of the computer output. The value of $N\alpha$ probably reflects a compensation for small errors in the data rather than a true indication of excited-state admixture to the ground state. In some cases there were small differences between experimental points and the theoretical curves at the lowest temperatures. This is associated with the increased importance of the susceptibility of the paramagnetic impurity which must be subtracted from the total susceptibility. The corrected molar susceptibilities are given in Table II. The data are listed in the order of measurement and indicate several runs for some of the complexes. The least-squares curves and experimental data for three complexes are shown in Figures 1-3. The 4-nitropyridine N-oxide complex had the smallest estimated error in 2J while the 4-carbomethoxypyridine N-oxide complex had the largest estimated error in 2J. The 4-cyanopyridine N-oxide complex contained the largest percentage of paramagnetic impurity. These complexes were chosen to indicate the agreement between the theoretical expression and the experimental data for the three most extreme cases.

Reflectance Spectra.—Reflectance spectra were run on a Beckman DK-2A reflectometer over the range 700–2400 nm. MgO was used as the reference. The absorption band in the 700–1000-nm region is broad and it is difficult to locate a maximum ac-

Table	Ι
-------	---

Parameters Obtained fr	om a Leas	T-SQUAR	es Fit	TO THE
MAGNETIC SUSCEPTIBILITY	Equation	with g	Fixed	ат 2.200

		ų		
	2J,	$10^6 N \alpha$,	$10^{3}C_{\mathrm{i}}$,	%
Complex	cm -1	cgsu	cgsu deg	impurity
[(pyO)CuCl ₂] ₂	$716~\pm~27$	96	0.0	0.0
$[(4-picO)CuCl_2]_2$	829 ± 40	14	2.2	0.5
$[(4-t-C_4H_9pyO)CuCl_2]_2$	$776~\pm~38$	37	0.53	0.1
$[(4-Bz(pyO))CuCl_2]_2$	838 ± 50	54	2.1	0.5
$[(4-CH_2OHpyO)CuCl_2]_2$	$941~\pm~43$	26	4.6	1.0
$[(4-Cl(pyO))CuCl_2]_2$	1064 ± 48	40	2.2	0.5
$[(4-Br(pyO))CuCl_2]_2$	$1050~\pm~49$	36	5.3	1.2
$[(4-CH_3OpyO)CuCl_2]_2$	$994~\pm~45$	29	2.4	0.5
$[(4-C_2H_5OpyO)CuCl_2]$	1027 ± 47	37	2.0	0.5
$[(4-C_6H_5pyO)CuCl_2]_2^a$	$1027~\pm~48$	48	0.63	0.1
[(4-CNpyO)CuCl ₂] ₂	$966~\pm~39$	35	1.6	0.3
$[(4-COOCH_3pyO)CuCl_2]_{2}^{a}$	$923~\pm~50$	23	4.3	1.0
$[(4-NO_2pyO)CuCl_2]_2$	$529~\pm~30$	60	10.6	2.4

^{*a*} Low-temperature data only.

curately. In general, agreement with the values reported by Kato, *et al.*,¹⁰ was very good; however, agreement on the ν_{max} assignment for the di- μ -(4-nitropyridine N-oxide)-bis[dichloro-copper(II)] and di- μ -(3-methylpyridine N-oxide)-bis[dibromo-copper(II)] was poor. We find ν_{max} for these two complexes to be 1025 and 1250 kK compared to 910 and 1190 kK. These peaks are very broad and the change in sensitivity of their single-beam instrument over this range may account for the discrepancy. There are other interesting absorption bands in the region 1500–2100 nm; however, data will have to be collected on additional complexes before they can be interpreted. The ν_{max} values for the 4-bromo-, 4-phenyl-, and 4-*t*-butyl-substituted pyridine N-oxide complexes were not obtained because of in-sufficient sample size.

Discussion

Figure 4 shows a plot of the exchange energy 2J vs. ν_{\max} for the absorption band in the 700–1000-nm range. The diagram indicates a reasonable correlation between the two quantities. Figure 5 shows a plot of 2J vs. $\sigma_{\rm R}$ where $\sigma_{\rm R}$ is the portion of the substituent parameter assigned to the resonance contribution. There is no single correlation between $\sigma_{\rm R}$ and the exchange energy; however, the data possibly indicate two independent correlations, and two lines have been drawn through the points.

If inter- and intramolecular interactions were identical in the solid for all 4-substituted complexes, a correlation might be expected between some parameter related to the substituent effect and the magnitude of the exchange energy. The crystal structure^{18,19} of the 1:1 complex of pyridine N-oxide and copper(II) chloride shows several significant intermolecular interactions. The structure basically is composed of oxygen-bridged dimers which are associated into long chains by weak chloride bridges. The copper ion is pentacoordinate, and the geometry may be described as a highly distorted square-based pyramid. There is a strong intermolecular steric interaction between the ortho pyridine hydrogens of one dimer and the chloride ions of an adjacent dimer in the same chain. This interaction depends upon the substituent in the 2 position; however, it should be similar for all 4-substituted complexes if

⁽¹⁴⁾ G. S. Hopper, Ph.D. Thesis, Texas Christian University, Fort Worth, Texas, 1968.

⁽¹⁵⁾ Ammonium manganese sulfate hexabydrate obeys the Curie law $\chi_g = C/T$ over the temperature range used for the calibration.

⁽¹⁶⁾ B. N. Figgis and R. S. Nyholm, J. Chem. Soc., 4190 (1958).

⁽¹⁷⁾ K. Kambe, J. Phys. Soc. Japan, 5, 48 (1950).

⁽¹⁸⁾ R. S. Sager, R. J. Williams, and W. H. Watson, *Inorg. Chem.* 6, 951 (1967).

⁽¹⁹⁾ R. J. Williams, R. S. Sager, and W. H. Watson, ibid., 8, 694 (1969).

TABLE II MAGNETIC SUSCEPTIBILITY DATA FOR 1:1 COMPLEXES⁴

$\chi^{\circ}_{\mathfrak{n}}$	Τ°Κ	$\chi^{ m c}_{ m m}$	Т°К	$\chi^{\rm c}_{\rm m}$	Т°К	$\chi_{ m m}^{ m c}$ (Pyridi	T°K ne N-oxi	$\chi^{c}_{\mathfrak{m}}$.de) CuCl $_{2}$	Т°К	$\chi^{\rm c}_{\rm m}$	т°К	χ_{m}^{c}	Τ°K
268 269 267 264 259 257 251 247	301 302 303 301 298 295 291 285 2 83	244 240 238 233 229 225 218 211 207	281 277 273 266 263 259 253 251	206 201 199 194 189 180 171 156 135	249 247 243 239 232 228 221 212 194	129 124 115 110 108 105 104 100 86	188 182 176 163 160 155 152 143 105	85 85 267 275 285 286 294 295	91 84 78 297 304 310 311 328 319	309 309 323 323 339 338 351 365 365	330 329 343 342 358 357 370 386 386	367 365 364 269 268 363 376 378 386	387 385 384 298 297 383 395 404 415
113 113 90 81 76 74 72 72 72 74	299 299 268 261 255 254 251 253 256	77 80 82 85 88 94 98 102 110	259 263 265 268 273 280 282 282 286 297	108 90 62 57 53 50 46 44 41	292 269 236 229 224 218 211 206 198	37 34 31 30 24 22 109 27 19	190 178 168 164 140 133 296 150 120	18 16 15 13 11 12 12 11	115 104 103 92 94 86 87 89 297	111 118 128 129 139 152 154 167 181	297 304 313 314 323 335 336 348 360	181 200 214 230 228 236 249 252	360 376 389 390 404 402 411 423 423
168 167 166 162 159 155 151	301 301 301 297 294 289 286	147 143 137 128 121 112 102 100	281 276 269 258 250 242 232 231	87 78 72 63 58 59 48 45	217 206 199 187 179 160 157 151	(4-t-buty) 43 40 39 39 39 39 40 (4-puridulos	141 123 122 108 98 80 79 79 79	165 165 166 176 176 177 184 186 195	299 299 300 308 308 314 316 323	206 207 222 224 237 242 256 256	332 334 346 347 359 362 375 375	268 268 299 300 312 312 314	385 385 400 417 417 431 431 431
85 85 85 83 81 80 78	298 299 300 296 293 290 287	74 69 66 64 60 57 54 47	280 269 256 247 241 232 217	44 38 37 33 31 31 29 29	206 178 174 155 142 136 127 125	28 26 25 27 27 22 24 83	118 109 102 92 87 79 80 299	83 83 89 98 99 110 111	12 300 299 307 308 319 320 333 335	122 123 125 124 146 147 158 159	347 359 359 372 373 383 384	175 177 186 185 197 197	400 402 410 410 420 419
150 147 143 140 138 135 132 129 117	298 295 290 287 284 280 276 273 258	114 112 110 108 105 103 100 94 88	256 253 250 246 241 238 234 226 218	85 81 78 71 67 67 64 62 57	212 205 199 184 178 175 165 158 132	56 55 54 54 55 55 55 53 53 149	126 118 101 90 89 90 79 78 298	150 151 154 156 157 166 166 173 175	2 298 298 304 304 304 312 312 312 319 320	181 182 200 200 214 214 226 226 240	331 331 342 356 356 367 367 382	239 252 252 260 259 258	381 396 395 406 405 405
71 73 68 66 64 62 60 59	298 298 287 283 278 275 275 275 265 263	58 55 51 50 43 43 43 43 43 43	262 253 240 233 168 163 160 143 140	44 69 68 62 52 49 47 46 45	(4 174 292 288 273 244 235 228 216 205	-chloropyrid 44 43 41 40 40 40 40 40 40 40 40	dine N-0 197 183 170 149 138 135 130 121 120	xide) CuCl ₂ 39 39 37 37 71 75 81 82	101 90 91 79 89 298 304 314 316	88 89 95 104 114 125 72 76 76	325 325 336 348 362 376 298 305 307	108 128 140 139 148 156 155 166	352 379 393 391 403 414 413 425 425
72 73 74 75 74 71 67	300 301 303 300 294 287	65 60 57 54 52 50 49	281 269 259 251 243 236 230	47 45 43 42 38 36 36	(4~) 219 205 196 183 174 161 149	oromopyridir 35 36 40 35 37 74	144 127 121 93 79 80 302	le) CuCl2 75 87 80 90 - 90 96 96	302 312 312 328 329 338 338	74 74 83 84 102 105 112	301 301 317 318 347 351 363	121 128 128 137	378 389 388 402
83 83 81 77 75	310 310 310 310 303 298	71 69 73 61 57 49	291 287 280 267 257 236	47 44 39 38 37 36	(4- 229 217 194 187 176 167	-methoxypyri 32 31 31 30 29 30	dine N-0 133 129 123 119 93 95	xide) CuCl ₂ 27 27 76 77 77 81	80 79 301 302 302 309	84 89 91 102 116 116	314 321 323 338 356 356	134 134 146 151 169 168	378 378 392 397 416 415
75 75 73 69 67 66	298 297 291 283 278 278	64 62 59 56 53 47	268 263 254 243 231 207	46 43 42 42 39	203 175 171 162 140 127 (4	39 39 37 35 33 33 33	123 121 98 89 79 79 dine N-c	75 75 75 80 80 87 87 xide) CuClo	298 299 307 307 319	88 95 96 101 102 110	320 332 341 343 354	111 123 133 146 157 164 164	354 370 384 400 415 424 423
91 90 88 85	298 299 294 288	81 78 75 73	280 274 266 261	71 68 66 61	258 251 242 228	59 57 55 51	213 204 194 181	50 49 49 48	170 163 156 144	48 48 47 47	139 125 119 109	48 51 49 49	96 93 80 78
90 90 88 84 81 78 76 73	299 299 296 289 283 278 278 274 270	73 72 69 65 63 61 60 56	268 266 253 250 243 239 227	55 53 47 45 43 41 39 34	(4 222 217 205 199 192 183 161 144 (4-c	-cyanopyrid 34 31 32 34 43 41 44 30	1100 N-0X 140 123 121 109 92 94 85 79	1de) CuCl ₂ 28 89 89 93 94 98 98	78 299 299 305 305 311 311	104 105 112 112 119 120 132 132	318 319 330 330 340 341 354 354	144 143 156 155	366 366 381 380
94 94 94 92	300 300 300 300	87 82 77 69	292 286 280 268	66 62 59 56	264 257 250 244	53 47 45 34	239 225 220 194	29 28 23 24	176 172 140 136	22 22 21 21	128 122 110 107	23 25 25 23	92 94 83 79
442 443 442 436 425 416 409 400 392	298 298 293 286 279 275 270 266	389 394 382 371 364 358 343 325 320	265 268 260 255 251 247 238 230 228	289 284 239 231 217 203 184 174 165	217 215 197 193 188 182 173 169 165	154 146 143 117 83 81 79 74 75	160 156 155 142 121 119 118 110 104	76 61 63 442 442 450 452 460 461	88 79 298 298 304 305 310 311	473 481 482 493 503 503 513 513 522 521	321 328 329 340 352 352 366 382 382	527 526 529 532 532 535 535 535 535	396 394 402 410 410 418 424 423 430

 $a_{\chi m^{cor}} \times 10^{6}$ cgsu and T°K are listed for the two overlapping temperature ranges.

Figure 1.—Least-squares fit of temperature dependence of $\chi_{\rm m}^{\rm cor}$ to a modified Bleaney–Bowers equation for di- μ -(4-nitro-pyridine N-oxide)-bis[dichlorocopper(11)].

Figure 2.—Least-squares fit of temperature dependence of χ_m^{cor} to a modified Bleaney-Bowers equation for di- μ -(4-carbo-methoxypyridine N-oxide)-bis[dichlorocopper(II)].

Figure 3.—Least-squares fit of temperature dependence of χ_m^{cor} to a modified Bleaney–Bowers equation for di- μ -(4-cyano-pyridine N-oxide)-bis[dichlorocopper(II)].

packing permits the pyridine rings to achieve the same orientation. The Cu–Cl stretching frequencies imply the steric interactions may not be identical for all of the 4-substituted complexes. There also is a significant interaction between the hydrogen atom in the 4 position and the copper(II) ion of an adjacent chain. No chemical bonding is implied, but the electrostatic inter-

Figure 4.—A plot of the ligand field bands against the exchange energies for a series of 4-substituted pyridine N-oxide complexes, $[(RC_5H_4NO)CuCl_2]_2$. The values for the 3-CH₃ complex, $[(3-CH_3C_5H_4NO)CuBr_2]_2$, are taken from ref 10 and W. E. Hatfield and J. C. Morrison, *Inorg. Chem.*, **5**, 1390 (1966).

Figure 5.—A plot of the substituent parameters σ_R against the exchange energies for a series of 4-substituted pyridine N-oxide complexes, [(RC₅H₄NO)CuCl₂]₂. The 3-CH₃ complex, [(3-CH₃-C₅H₄NO)CuBr₂]₂, has been included.

action may affect the electron distribution around the copper ion. This interaction must depend upon the substituent in the 4 position. Either of the two effects described above should affect the magnitude of the exchange energy, and it is not too surprising that no single correlation exists between a parameter related to the substituent effect and 2J. We suggest there may be several correlations which depend upon the nature of the intermolecular interactions in the solid. For complexes with similar crystal structures and intermolecular interactions, the exchange energy should correlate with a substituent parameter. It is difficult a priori to rationalize why the hydrogen-, t-butyl-, and methoxysubstituted complexes show similar intermolecular interactions since they differ greatly in size and polarity. We propose to determine the crystal structures of several complexes in each series shown in Figure 4.

Anything which affects the electron distribution

Vol. 8, No. 9, September 1969

around the copper(II) ion affects the magnitude of the exchange energy and also the position of the electronic absorption bands. The band in the 700-1000-nm region of the spectrum apparently is characteristic of the dimeric structure of the molecule. The electron distribution may be affected by changing the crystal field strength of the ligand through substitution or changing the symmetry of the crystal field by steric interactions or by intermolecular interactions. While the direct relationship between the singlet-singlet transition in the 700-1000-nm range and the singlet-triplet separation corresponding to infrared frequencies has not been elucidated, it appears to be reasonable qualitatively.

Acknowledgment.--We wish to acknowledge the financial support of The Robert A. Welch Foundation and the T.C.U. Research Foundation. We also wish to thank NASA for a traineeship (to M. R. K.) and Mr. Bob Jarnutowski of Beckman Instruments for running the reflectance spectra.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65201

The Oxidation of Hydrazoic Acid by Bromate Ion in Perchlorate Solution

BY RICHARD C. THOMPSON

Received March 31, 1969

Nitrogen and nitrous oxide are the only oxidation products produced when excess hydrazoic acid is oxidized by bromate ion in perchloric acid-lithium perchlorate solution. The reduction products of the bromate ion are hypobromous acid and bromine. The rate expression is $-d[BrO_8^-]/dt = k_0[BrO_8^-][HN_8][H^+]$. At 25.0° and 2.0 M ionic strength, the value of k_0 is $(6.22 \pm 0.06) \times 10^{-2} M^{-2}$ sec⁻¹, and the associated activation parameters are $\Delta H^{\pm} = 13.5 \pm 0.2$ kcal/mol and $\Delta S^{\pm} = 13.5 \pm 0.2$ -18.7 ± 0.6 eu. Oxygen-18 tracer studies reveal that most, but not all, of the oxygen in the nitrous oxide product is derived from the solvent.

Introduction

Ce(IV),¹ Co(III),² and Mn(III)³ react with HN₈ to produce the stoichiometric quantity of N_2 . While HNO_2 oxidizes HN_3 to produce the stoichiometric amounts of N₂ and N₂O,⁴ most multiequivalent oxidizing agents, if they react at all, have been reported to produce in addition higher oxidation states of nitrogen.⁵ A previous report² has demonstrated that the reaction of HN15-N14-N15 with bromate produces N15-N14 and N15-N¹⁵-O. This communication reports a stoichiometric and kinetic study of this latter reaction. In addition, we have investigated the source of the oxygen in the N₂O product through oxygen-18 tracer studies.

Experimental Section

Reagents .-- Reagent grade sodium bromate and allyl alcohol were used without further purification. The preparation and standardization of the perchloric acid and lithium perchlorate solutions have been described in a previous communication.6 Purified sodium azide was recrystallized twice using previously reported procedures,7 and solutions of this salt were standardized by the cerate procedure.¹ A mixture of bromine and hypobromous acid was prepared in the dark by vacuum distillation from a mixture of bromine water and mercuric oxide at 0°. These solutions were used the same day. Bromine water was prepared by the dissolution of reagent grade bromine. The water used was doubly distilled in an all-glass apparatus after distillation of deionized water from an alkaline permanganate still.

Oxygen-18-enriched sodium bromate was prepared by allowing a nearly saturated solution of the salt to equilibrate with enriched solvent in 2 M perchloric acid for 1 hr at 25°. The solution was then neutralized with solid sodium hydroxide, and the enriched sodium bromate was precipitated with a minimum amount of anhydrous, reagent grade methanol. Blank experiments demonstrated that no sodium perchlorate is precipitated in this procedure. The precipitate was washed with additional methanol, dissolved in the minimum amount of water, and reprecipitated as before. The salt was then carefully dried under vacuum and stored in a desiccator. The oxygen-18 enrichment of the sodium bromate was determined by conversion to carbon dioxide by the Anbar technique,⁸ separation by gas chromatography, and mass spectrometric analysis of the 46/(44 + 45) mass ratio on a nuclide RMS-16 mass spectrometer. The oxygen-18-enriched water was purchased from Volk Radiochemical Co.

Procedures. Kinetic Studies .- Attempts to monitor the reaction by spectrophotometry proved to be impractical for reasons to be discussed later. Consequently, a titrimetric method for determining the bromate concentration during the reaction was used. Allyl alcohol in ca. 50% excess over the initial bromate concentration was present to scavenge the hypobromous acid product (vide infra). In a typical run, 400 ml of a solution containing the desired amounts of sodium bromate, lithium perchlorate, and perchloric acid was brought to temperature equilibrium in a constant-temperature bath. The desired amount of allyl alcohol was then added, and the reaction was initiated by addition of a sodium azide solution with vigorous stirring. All reactions were run in the absence of light. Suitable aliquots were withdrawn at appropriate times and added to an excess of acidified sodium iodide solution. The recorded time corresponded to half-delivery of the reaction solution; time

⁽¹⁾ J. W. Arnold, Ind. Eng. Chem., 17, 215 (1945).

⁽²⁾ R. K. Murmann, J. C. Sullivan, and R. C. Thompson, Inorg. Chem., 7, 1876 (1968).

⁽³⁾ C. F. Wells and D. Mays, Inorg. Nucl. Chem. Letters, 4, 61 (1968).

⁽⁴⁾ F. Seel and R. Schwaebel, Z. Anorg. Allgem. Chem., 274, 169 (1953). (5) D. M. Yost and H. Russell, Jr., "Systematic Inorganic Chemistry," Prentice-Hall, Inc., New York, N. Y., 1946, p 129.

⁽⁶⁾ R. C. Thompson and J. C. Sullivan, Inorg. Chem., 6, 1795 (1967).

⁽⁷⁾ A. W. Browne, Inorg. Syn., 1, 79 (1939).

⁽⁸⁾ M. Anbar and S. Guttmann, J. Appl. Radiation Isotopes, 5, 233 (1959).